Create a correlation plot from a metacoder/taxmap object.
correlation_plot(obj, primary_rank, secondary_rank = TRUE, wp_value = 0.05, pal_func = NULL, trans = "logit")
| obj | An object to be converted to a Taxmap object with |
|---|---|
| primary_rank | The primary rank used to label the points. |
| secondary_rank | The secondary rank used to color the points. Can be an integer specifying the number of supertaxon ranks above the primary rank or the name of a supertaxon rank. Default: TRUE |
| wp_value | The Wilcoxian P-Value used to represent significant points. Default: 0.05 |
| pal_func | A palette function that returns grDevices::colorRampPalette. |
| trans | Either the name of a transformation object, or the object itself given to |
A 1:1 correlation plot built with ggplot2.
Correlation plots help to better explain the heat tree findings.
create_taxmap, validate_MicrobiomeR_format, correlation_data, plot_limits, get_color_palette
ggplot, aes, geom_polygon, geom_point, labs, scale_continuous, scale_manual, guide_legend, geom_abline
Other Visualizations: alpha_diversity_plot,
correlation_data,
correlation_plots,
heat_tree_parameters,
heat_tree_plots,
ordination_plots,
ordination_plot, plot_limits,
save_alpha_diversity_plots,
save_correlation_plots,
save_heat_tree_plots,
save_ordination_plots,
save_stacked_barplots,
stacked_barplots,
stacked_barplot,
top_coefficients_barplot
# NOT RUN { if(interactive()){ # This example uses data that are no longer available in the MicrobiomeR package, # however, they can be easily generated with \code{\link{MicrobiomeR}{as_analyzed_format}}. library(MicrobiomeR) analyzed_silva <- as_MicrobiomeR_format(MicrobiomeR::raw_silva_2, "analyzed_format") correlation_plot(analyzed_silva, primary_rank = "Class", secondary_rank = "Phylum") } # }