This function provides a flexible way to filter unwanted samples from the "otu_abundance" and "sample_data" observations of a MicrobiomeR formatted object.
sample_id_filter(obj, .f_transform = NULL, .f_filter = NULL, .f_condition = NULL, validated = FALSE, ...)
obj | A Taxmap object. |
---|---|
.f_transform | A function used for transforming the data. Default: NULL |
.f_filter | A function used for summarising the data like 'sum' or 'mean'. Default: NULL |
.f_condition | A function that takes the summarised data and applied a condition like x > 10000. Default: NULL |
validated | This parameter provides a way to override validation steps. Use carefully. Default: FALSE |
... | An optional list of parameters to use in the .f_filter function specified |
Returns a Taxmap object with samples that pass the filters.
Get the samples to keep by using purr and the user supplied transform and filter + condition formulas. The purr package allows the use of anonymous functions as described in the link below:
https://jennybc.github.io/purrr-tutorial/ls03_map-function-syntax.html#anonymous_function,_formula
validate_MicrobiomeR_format
, transformer
Other Basic Metacoder Filters: otu_id_filter
,
taxon_id_filter
# NOT RUN { if(interactive()){ # Use the sample_id_filter early on in your analysis library(MicrobiomeR) library(metacoder) library(taxa) # Convert Phyloseq object to Taxmap object metacoder_obj <- as_MicrobiomeR_format(obj = phyloseq_silva_2, format = "raw_format") # Remove Archaea from the Taxmap object metacoder_obj <- filter_taxa( obj = metacoder_obj, taxon_names == "Archaea", subtaxa = TRUE, invert = TRUE) # Ambiguous Annotation Filter - Remove taxonomies with ambiguous names metacoder_obj <- filter_ambiguous_taxa(metacoder_obj, subtaxa = TRUE) # Low Sample Filter - Remove the low samples metacoder_obj <- sample_id_filter(obj = metacoder_obj, .f_filter = ~sum(.), .f_condition = ~.>= 20, validated = TRUE) } # }